中信银行智能财富顾问小信:服务超百万投资者,满意度超 95%
中信银行也已入局。其基于大模型、自然语言处理、知识图谱已推出智能财富顾问“小信”,它不仅能解答“投资投什么”,还能解读“产品好不好”、分析“持仓怎么样”,以及给出资产负债、加减仓等建议。
客户觉得怎么样呢?一组数据可以说明,截至今年6月末,“小信”已累计服务超百万普通投资者,累计会话量超327万通,用户满意度超95%。
第三个案例是AI大模型赋能研发。
民生银行是“吃螃蟹者”,其研发团队推出了代码大模型规模化应用方法——“慧码”旅程,并基于行内的大模型平台,打造了覆盖开发、集成、测试、投产的端到端运行风险监测能力。
具体效果如何?来看测试数据:引入代码大模型产品后,系统的生成采纳率为20-30%之间,采纳代码与提交量占比大致在30%左右,接近业界主流实践水平,代码注释率从18%提升至约30%。一句话:民生银行的开发效率和代码质量实现了大幅提升。
而这三个案例仅仅是中国银行业数字化、智能化转型的“一隅”。
AI浪潮愈加汹涌。截至目前,中农工建交邮储6家国有大行都已经发布了自己的大模型,股份行中,招行、平安、兴业、中信、浦发、民生6家银行也已推出自己的大模型。
剩余的浙商、光大、华夏三家银行正加码资源,积极研发AI大模型。
场景落地事关降本增效,以及新商业增量的挖掘,虽然搞得很热闹,但目前仍处于探索尝试的初期。
根据财报和公开资料,银行大模型主要应用于智能问答、智能客服、智能撰写研报、智能风控、智能营销、数智财富管理等,标准化程度较高的业务模块。
02|两条技术路线
十年河东,十年河西。
遥想十年前,银行还是移动互联网转型的“困难户”。如今,他们已成为AI大模型落地的“排头兵”,并走出了两条不同的技术发展路线。
其一是技术自研派,大概率是想实现完全的自主可控,农行“”、建行大模型、平安银行、兴业银行是代表选手。
他们都拥有较强的科技实力。《麻省理工科技评论》发布的最新榜单显示,平安集团在大模型领域的专利申请量为327件,位居全球前三,建行、农行位居前十。
基于此,农行是国内最早推出银行大模型的机构。农行“”和兴业银行的参数规模已达到百亿级。
建行大模型、平安银行暂未披露相关技术数据。但落地情况可圈可点,截至上半年末,建行大模型已全面赋能对公、零售、资管、风控、科技、管理六大板块79个内部业务场景;平安银行已应用在零售贷款审批、运营管理数智化升级、消保降诉、汽车金融AI验车等业务场景中,实现了降本增效。
其二是“融合派”,走的是“外部引入+内部自研”的技术路线,代表选手有工行、交行、邮储、招行、中信、浦发、民生、浙商8家银行。
并非这几家银行技术不行,而是因为他们想借鉴外部千亿大模型的底层能力,再来打造百亿级的银行垂直模型,以实现能力互补,快速落地。
理论上是可行的。通用大模型灵活度高、泛用性强,但受制于成本,在细分领域并不深入。垂直模型的专业性、合规性强,但通用性差,数据利用率低。二者正好互补。
实践中也取得了一定成果。比如工行大模型和华为昇腾大模型合作研发的,其参数规模已经达到千亿级,已在金融市场、信贷风控、网络金融等50多个场景落地,在银行业内处于领先地位。
邮储银行这两年的转型速度很快,它在半年报中花了大篇幅来介绍AI大模型在生成创作、研发、风控、消费者权益保护、法律法规等场景的落地情况,以及降本增效成果。它和智谱AI有合作,“邮储大脑”已经接入百度文心一言。
招行最为开放,去年引入了上海稀宇科技()的千亿级大模型,随后又积极“牵手”腾讯、华为、商汤科技、字节系的火山引擎、智谱AI等科技公司。
并且,招行还表示,将“加强与百余家大模型生态链企业的深度沟通,推进大模型内、外部生态建设,加快推动AI大模型等前沿科技在本公司的应用落地。”看得出来,招行对AI“野心勃勃”。
当然,其他银行也是如此,对AI志在必得。
所以,未来一段时间,AI大模型的场景化落地将会是银行业的重要命题——它考验的不仅仅是哪条技术路线能落地更快、更稳,更考验银行的战略规划、落地执行等能力。
“逐鹿”AI,银行机构将进入一场全维度的高烈度战争。
03 |大模型拐点未至
聊了这么多,是不是有种感觉:AI银行要来了。
以后在线上,智能AI助手就能解决你的日常金融需求,并根据你的习惯给出个性化解决方案,比如:A股大涨,会第一时间为你分析原因;资产配置不合理,能为你“量身定做”财富管理方案,并推送合适的金融产品。
如果需求复杂要去线下网点办理,客户经理早就通过AI系统了解到你的需求,并提前制定好了一站式解决方案。
银行基层员工们更是开心,他们终于从复杂繁琐的数据和报告中解脱了出来,不再受“案牍劳形之苦”,可以专注于业务发展和客户服务。
这太酷炫了,几乎就是布莱特·金描绘的银行4.0时代“金融无处不在”的情景。
但笔者现在要泼一盆冷水,实现上述梦想还很遥远。当前,银行连AI大模型“拐点”都还没跨过。
一个核心痛点是,以大模型为代表的生成式AI技术本身还不成熟。
受制于数据质量、语料库标准化建设、训练成本等因素,AI大模型经常出现“AI幻觉”,即一本正经地胡说八道。如本文初提到的,同花顺AI把时间都搞错了,2024年9月30日反而在国庆节之后。